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ABSTRACT
In this paper, we formulate a new theoretical problem,
namely the reliable broadcast problem in unknown fixed-
identity networks. This problem arises in the context of
developing decentralized security mechanisms in a specific-
class of distributed systems: Consider an undirected graph
G connecting n nodes where each node is aware of only its
neighbors but not of the entire graph. Additionally, each
node has a unique identity and cannot fake its identity to
its neighbors. Assume that k among the n nodes act in an
adversarial manner and the remaining n−k are good nodes.
Under what constraints does there exist a distributed algo-
rithm Γ that enables every good node v to reliably broad-
cast a message m(v) to all other good nodes in G? While
good nodes follow the algorithm Γ, an adversary can ad-
ditionally discard messages, generate spurious messages or
collude with other adversaries.
In this paper, we prove two results on this problem. First,
we provide a distributed algorithm Γ that can achieve reli-
able broadcast in an unknown fixed-identity network in the
presence of k adversaries if G is 2k+1 vertex connected. Ad-
ditionally, a minimum vertex connectivity of 2k +1 is a nec-
essary condition for achieving reliable broadcast. Next, we
study the problem of reliable broadcast in sparse networks
(1−connected and 2-connected) in the presence of a single
adversary i.e., k = 1. In sparse networks, we show that a sin-
gle adversary can partition the good nodes into groups such
that nodes within a group can reliably broadcast to each
other but nodes across groups cannot. For 1−connected and
2−connected graphs, we prove lower bounds on the num-
ber of such groups and provide a distributed algorithm to
achieve these lower bounds. We also show that in a power-
law random graph G(n, α), a single adversary can partition
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at most O(n1/α × (log n)(5−α)/(3−α)) good nodes from the
remaining set of good nodes.
Addressing this problem has practical implications to two
real-world problems of paramount importance: (a) develop-
ing decentralized security measures to protect Internet rout-
ing against adversaries; (b) achieving decentralized public
key distribution in static networks. Prior works on Byzan-
tine agreement [17, 11, 23, 13, 3, 4, 24] are not applicable
for this problem since they assume that either G is known,
or that every pair of nodes can directly communicate, or
that nodes use a key distribution infrastructure to sign mes-
sages. A solution to our problem can be extended to solve
the byzantine agreement problem in unknown fixed-identity
networks.

Categories and Subject Descriptors
C.2 [Computer communication networks]

General Terms
security, reliability, theory

Keywords
reliable broadcast, unknown network, byzantine agreement

1. INTRODUCTION
Reliable communication between nodes in the presence of
byzantine adversaries is a fundamental problem in dis-
tributed systems [3, 4] that was first considered in the con-
text of the classic Byzantine General’s problem [23, 17]. Con-
sider a network G = (V, E) where the edges in E represent
reliable channels between nodes in V . By reliable channels,
we mean channels over which message transmissions can-
not be dropped, tampered, or forged. In the simplest case,
when G is a clique, reliable communication between every
pair of nodes can be trivially achieved. For a general graph
G, Dolev [11] and Dolev et al. [12] proved that if there are k
faulty nodes, then every pair of nodes can reliably commu-
nicate if and only if the underlying graph is 2k + 1 vertex
connected. Biemel and Frankin [3] showed that the connec-
tivity constraint can be relaxed if some pairs of nodes share
authentication keys. However, if all nodes can be authen-
ticated using a trusted keyed infrastructure, the problem
of reliable communication becomes simple - any two nodes
that have a path traversing non-faulty nodes can use signed
messages to reliably communicate.
Existing works on reliable communication [17, 11, 23, 13, 3,
4, 24] assume that either the graph G is known or that nodes
can use a key distribution infrastructure to sign messages.



There are many practical scenarios in distributed systems
where neither of these assumptions hold. Motivated by this
observation, this paper addresses the following question: In
the absence of a key distribution infrastructure, under what
constraints can one achieve reliable communication when
each node is aware of only its neighbors but not the entire
graph G?

1.1 Problem motivation
The Internet and many social networks that we operate in
today, fall under the category of unknown fixed-identity net-
works satisfying two properties: (a) each node is assigned
a unique identity; (b) the entire graph is not known nor
published. For example, the Internet topology comprises of
roughly 17, 000 Autonomous systems (AS) where every AS
has a unique identity (AS number) assigned by IANA [1]
which it cannot fake. When a new AS joins the network, it
is only aware of its neighbors but is unaware of the AS topol-
ogy. In fact, the complete AS graph structure of the Internet
is unknown and is an open research problem to characterize
the representativeness of the actual Internet topology col-
lected from different measurement studies [8]. Domain Name
System [21] and Intra-domain routing are two other real-
world examples of unknown fixed-identity networks. Mobile
ad-hoc networks [15] and P2P networks [22] are two exam-
ples of networks that do not belong to this category.
Reliable communication in the presence of adversaries is a
fundamental necessity for improving the security of many
of these networks. We use Internet routing as a motivat-
ing example. Today’s Internet routing protocols are built on
the basic assumption that all nodes in the network propa-
gate truthful routing information [16, 28, 25]. A single com-
promised or mis-configured router acting in an adversarial
manner by propagating spurious routing information can
potentially affect reachability to a large fraction of the In-
ternet [20, 18]. While several security measures have been
proposed to improve the resilience of Internet routing [16,
25], none of them have moved towards adoption or deploy-
ment since these approaches typically require an extensive
cryptographic key distribution infrastructure or a trusted
central database [1]. Both of these ingredients are very hard
to deploy in practice.
Any solution that secures Internet routing in the presence
of adversaries should enable an AS to reliably broadcast its
state to all the other nodes in the network [25]. With a
key distribution infrastructure, this requirement is trivially
met since every node can sign its messages, thereby making
verification straightforward. In this paper, we focus on the
problem of whether one can achieve this key distribution
in a completely decentralized and distributed manner. We
formulate this problem next.

1.2 Problem formulation
We use the following two definitions in our problem formu-
lation.

Definition An unknown fixed-identity network U(n, G, N)
comprises of n nodes connected by an undirected graph G
where each node: (a) has a unique identity it cannot fake; (b)
knows the identities of its neighbors in G; (c) knows a value
N ≥ n which represents a bound on the size of the network.
For ease of convenience, we also refer to these networks as
unknown networks.

Definition An adversarial node can perform three types of
actions to disrupt reliable broadcast: (a) discard messages
traversing the node; (b) generate spurious messages; (c) col-
lude with other adversaries by exchanging information using
out-of-band communication.

Reliable broadcast problem in unknown fixed-
identity networks: Consider an unknown fixed-identity
network U(n, G, N). Assume that k among the n nodes act
in an adversarial manner and the remaining n−k are good
nodes that follow a prescribed algorithm. Under what con-
straints does there exist a distributed algorithm Γ that en-
ables every good node A to reliably broadcast a message m(A)
to all other good nodes in G?
Reliable broadcast is an instantiation of the reliable com-
munication problem where a node intends to communicate
the same message reliably to every other node in the net-
work. Once reliable broadcast is achieved, one can perform
pair-wise reliable communication by exchanging public keys
through reliable broadcast. For this reason, we focus on the
problem of reliable broadcast.

1.3 Summary of Results
The primary result we prove in this paper is:

Theorem 1. Given a bound k on the number of adver-
saries, there exists a distributed algorithm Γ that achieves
reliable broadcast in an unknown fixed-identity network
U(n, G, N) if and only if G is 2k + 1 vertex connected.

This result extends the prior result of Dolev [11] for un-
known fixed-identity networks. Dolev proved that a mini-
mum (2k + 1) vertex connectivity is essential for achieving
reliable broadcast even if the entire graph, G, is known to
all the nodes. Our result shows that one can achieve reliable
broadcast even in the case where G is unknown to the nodes
provided the graph satisfies the (2k+1) connectivity require-
ment. The time-complexity of the algorithm is dependent on
the values of k, N and is discussed in detail in Section 4.
The fixed-identity assumption is critical towards addressing
this problem. If this assumption is not met and an adversary
uses different identities to different neighbors, then we can
show prove the following result:

Lemma 1. For any given integer m > 0, there exists an
m-vertex connected network G on n nodes where each node
is initially aware of the identities of only its neighbors, such
that, a single adversary using multiple identities is sufficient
to disrupt reliable broadcast in G.

An alternative aspect of the problem arises for sparsely con-
nected networks which do not satisfy the (2k+1) connectiv-
ity requirement. In such networks, it is fundamentally im-
possible to achieve reliable broadcast. The best known result
for sparse networks is the non-solvability of the problem [11].
However, we show that it is possible to limit the damage that
an adversaries may cause in sparse networks.
In this paper, we study the reliable broadcast in sparse net-
works for the specific case of a single adversary (k = 1) and
show optimality results for this case. Hence, we only deal
with cases where the connectivity of the underlying network
(1−connected and 2− connected) does not permit reliable
broadcast even in the presence of a single adversary i.e.,
k = 1. We quantify the damage that a single adversary can
cause along two dimensions, as captured by the following
definitions:



Definition An adversary is said to create a broadcast parti-
tion of size m, if it can classify the set of good nodes, Vg, into
m groups (X1, . . . Xm), such that the following constraints
are met:

1. Each Xi is non-empty and Vg = X1 ∪ . . . ∪Xm.
2. Nodes within Xi can reliably broadcast to other nodes

in Xi but not to nodes in Xj for j 6= i.

Definition Given a broadcast partition B = (X1, . . . Xm)
of Vg created by an adversary w, the cumulative damage
caused by w is given by mini|Vg −Xi|. If Xj represents the
largest broadcast group in B, then the cumulative damage
represents the number of nodes that cannot communicate
with Xj .

The cumulative damage of an adversary measures the num-
ber of nodes that a single adversary can affect. If we consider
Internet routing as an example, this metric represents the
lower bound on the number of nodes that an adversary can
affect by propagating bogus messages. We prove the follow-
ing result for reliable broadcast on sparse networks:

Theorem 2. Given that an unknown fixed-identity net-
work U(n, G, N) has exactly a single adversary A with degree
d(A), the following statements hold:

1. If G is 1−connected, A can create a broadcast partition
of size at most 2× d(A).

2. If G is 2−connected, A can create a broadcast partition
of size at most d(A).

These results are optimal in the sense that these represent
not only the lower-bound on the amount of damage that an
adversary can cause but also a tight upper-bound. We pro-
vide an algorithm that restricts the amount of damage an
adversary can cause and achieves the lower bound. While
Theorem 2 provides only a bound on the size of a broadcast
partition, it does not provide a bound on the cumulative
damage caused by a single adversary. One can construct
1−connected and 2−connected graphs where the cumula-
tive damage is O(n). However, we show that the cumulative
damage of an adversary in a power-law random graph [2, 9]
is much smaller than n as summarized below:

Theorem 3. Given an unknown fixed-identity network
U(n, G, N) where G is a power-law random graph on n ver-
tices with parameter α satisfying 2 < α < 3, the cumu-
lative damage caused by a single adversary is bounded by
O(n1/α × (log n)(5−α)/(3−α)) with high probability.

This result has important practical implications for the In-
ternet and many social networks that exhibit structural sim-
ilarities to power-law random graphs [2]. In such types of
networks, the cumulative damage that an adversary may
cause is very small compared to the size of the network.

1.4 Related Work
The problem of reliable broadcast (RB) is closely related
to the classic problem of Byzantine agreement (BA) first
proposed in [23, 17]. More recent works on the problem of
byzantine agreement include [11, 13, 12]. We summarize the
relationship between the problem of reliable broadcast to
the Byzantine agreement problem with the following obser-
vation:
Observation: Given n nodes of which k are adversarial, then
two results hold: (a) BA =⇒ RB; (b) If RB is achievable,
then one can achieve BA if n ≥ 3k + 1.

The first result implicitly follows from the fact that
¬RB =⇒ ¬BA. If two good nodes cannot reliably transmit
messages between themselves, then they cannot achieve BA.
The second result indirectly follows from previous works by
Lamport et al. [17, 23] and Dolev [11].
In the seminal work by Lamport [17, 23], a protocol for
Byzantine agreement was proposed under the assumption
that either G is known or that every pair of nodes can di-
rectly communicate or that nodes use a key distribution in-
frastructure to sign messages. These basic assumptions con-
tinue to be necessary in later works [11, 12, 13]. The re-
lationship between BA and RB is also implied in Dolev’s
result [11] (the purifying algorithm presented in Dolev’s pa-
per achieves RB when G is known).
An identity-based cryptosystem [26] is an alternative pro-
posal where the identity of a node indicates its public key.
Recent work on identity based encryption (IBE) [6, 10] rep-
resent the most general implementation of a usable identity-
based cryptosystem. While one can envision using IBE to
achieve reliable broadcast, IBE requires a trusted master
server to be entrusted with the private key of all partici-
pants. This assumption is, again, undesirable in large-scale
distributed systems.

2. PATH VECTOR SIGNATURES
In this section, we describe the concept of path vector sig-
natures, one of the basic building blocks we use to solve the
problem of reliable broadcast. A path-vector signature is a
signature associated with a message that traverses a particu-
lar path within the network. These signatures enable a good
node to differentiate between genuine messages generated by
good nodes from spurious ones generated by adversaries. An
adversary (or a set of adversaries) that intends to disrupt a
good node v from reliably communicating a message m(v),
will attempt to propagate spurious messages m′(v) claiming
to be from v. To defend against such adversaries, we asso-
ciate with each message a specific path-vector signature that
is cryptographically computed and updated by every node
along the path through which the message is propagated, so
that no adversary can tamper with the message. Hence, an
adversary intending to propagate a spurious message claim-
ing to be from a good node v is forced to generate a different
signature in comparison to the same message being gener-
ated by the source.
More formally, a path-vector message (m, s, p) consists of
three parameters: a message m, the identity of the source
s, and a path p containing the identities of the nodes the
message traverses including the source s. A path-vector sig-
nature, sgn(m, s, p), is a signature corresponding to a path-
vector message (m, s, p) which is initiated by the source s
and incrementally updated by every node along the path
p. It is important to note that if a node u propagates a
path-vector message (m, s, p) to v, then v’s identity is al-
ready appended to the path p by u signifying that u has
propagated the message to v. Hence, a node v that receives
a message should have its identity as the last node in the
path and cannot remove its identity (in case, v is an adver-
sary). The path-vector signature, sgn(m, s, p), should satisfy
three properties:

1. Verify: Given (m, s, p) and sgn(m, s, p), any node
should be able to verify that the message traversed the
nodes in path p provided the message m was initiated
at s.



2. Append an identity: Let a node with identity x re-
ceives a message (m, s, p) along with sgn(m, s, p). If
x intends to forward the message to a neighbor with
identity y, x should be able to compute the valid sig-
nature sgn(m, s, p′), for the message (m, s, p′), where
p′ is the path (p, {y}).

3. Inability to modify: Given a path-vector message,
(m, s, p), an adversary should not be able to produce
a valid signature for any message (m′, s, p′) where
m′ 6= m or p′ is not a path of the form (p, pf ) where
pf is any other path of identities. In other words, the
adversary can append identities to the path but not
remove identities.

We now discuss a simple path signature construction that
satisfies these requirements. This construction relies on
an underlying conventional public-key signature scheme G,
where G(m, P ) refers to the message m signed using the
public key P . There are several known schemes that can be
used for this purpose, one example being the El Gamal sig-
nature scheme [14]. Consider a node v1 sending a message m
to node vn over the path (v1, . . . vn). Let each node vi gen-
erate a public key g(vi). The prescriptions of our protocol
are as follows:

1. Initialization: Every node vi generates its public key
g(vi), and for (i > 1), communicates it to its neighbor
vi−1.

2. Message Initiation: The source v1 sends the message
m1 = [ (m, s, p1), sgn1 ] to its neighbor v2 where s =
(v1, g(v1)), p1 = [ (v1, g(v1)), (v2, g(v2)) ], and sgn1 =
{G((m, s, p1), g(v1))}.

3. Incremental update: Node vi (i > 1) receives message
mi−1 = [ (m, s, pi−1), sgni−1 ] from its predecessor
vi−1. It then sends message mi = [ (m, s, pi), sgni ]
to its successor vi+1 where pi = [ pi−1, (vi+1, g(vi+1)) ]
and sgni = {sgni−1, G((m, s, pi), g(vi))}.

Note that each node vi includes the identity of its succes-
sor vi+1 in its message mi. This identity also includes the
public key announced by vi+1. Thus, in essence, the mes-
sage received by node vi consists of the original message m,
the identity of originator s along with its claimed public key
g(vi), and a path signature where the identity and public
key of each hop is certified by its predecessor. Any node
vi on the path that receives a message (m, s, p) along with
sgn(m, s, p) can verify the correctness of each individual sig-
nature according to the signature scheme G. This construc-
tion satisfies the following lemma:

Lemma 2. Any fake path vector message M = (m, s, p)
generated by an adversarial node with a genuine signature
sgn(M) can only be one of two categories:

1. M was generated by a single adversary v which gen-
erated fake public keys g′(u) for all identities u that
precede v in p.

2. Two colluding adversaries v, w that occur in p can
insert a spurious path fragment comprising arbitrary
identities (including identities of good nodes) between
v and w in the path. For each such good node x whose
identity was added by v and w, the adversarial nodes
need to generate a fake public key g′(x).

It is essential for every node along the path to sign every
message for this lemma to hold and distinguish any fake
message. If not, an adversary can insert arbitrary path-
fragments with identities and this can perturb the graph-

computation process described in Section 3. This motivates
the concept of a keyed-identity of a node denoted as
(x, g(x)), where x is the identity and g(x), the claimed public
key of x in a message. Every path-vector message contains
a string of keyed-identities. Any message with the keyed-
identity (x, g(x)) is distinctly different from a message con-
taining the keyed identity (x, g′(x)), of which, certainly one
of the messages is bogus (since good nodes do not claim
conflicting public keys). However, given only these two mes-
sages, a receiving node cannot immediately determine as to
whether g(x) or g′(x) is the genuine public-key of x. We ad-
dress this problem of determining the genuine keyed-identity
in the next section.

3. RELIABLE BROADCAST ALGORITHM
Based on the concept of path-vector signatures, we describe
our reliable broadcast algorithm in this section. The algo-
rithm uses two main ideas:
Keyed-identity graph computation: Every good node x
uses the information from path-vector messages to continu-
ously compute a keyed-identity graph Gx, where the nodes
in the graph are of the form (v, g(v)), comprised of the ac-
tual identity v and the claimed public key g(v). To prevent
unnecessary path exploration, a path-vector message that
contains no additional information(no new edge or vertex)
is not propagated further.
Determining genuine identities: If the underlying graph
G is 2k + 1 vertex connected with k adversaries, then, be-
tween every pair of good nodes, there exists at least k + 1
vertex disjoint paths that traverse only good nodes. Hence,
in the keyed-identity graph, Gx, if the number of identity-
disjoint paths to a keyed-identity (v, g(v)) is at least (k+1),
then x can conclude g(v) to be the genuine public-key corre-
sponding to identity v. Any bogus keyed identity (v, g′(v))
generated by adversaries can at most traverse k vertex dis-
joint paths since the identity of at least one adversary should
be present in each path. If a message is not signed by every
node along the path, an adversary can generate spurious
edges and disrupt the computation of disjoint paths. The
fact that adversaries can at most prove k disjoint paths to
a fake node is critical for the solvability of this problem.

3.1 Asynchronous Broadcast Algorithm
Based on these two ideas, we describe an asynchronous al-
gorithm to achieve reliable broadcast. Given a path-vector
message (m, s, p) and its signature, we define the keyed iden-
tity path PI(m, s, p) associated with (m, s, p) to consist of
vertices (vi, g(vi)), where vi is the identity of a node in p
and g(vi) is the public key of vi in the signature. We use Gx

to denote the keyed-identity graph computed by a node x
with a set of neighbors N(x). Every good node x performs
the following set of operations.
BROADCAST(Node x, Neighbors N(x))

1. Asynchronous node wakeup: A node can either begin
broadcast by itself or begin transmissions upon receipt
of the first message from a neighbor.

2. Initiation: Gx consists of one vertex (x, g(x)).
3. For every u ∈ N(x), x transmits (m(x), x, [x, u]) to u

along with its signature.
4. Propagation: For every path-vector message (m, s, p)

with signature S that x receives from u ∈ N(x), x
performs:
(a) Immediate-neighbor key check: Check if public-



key of u in S matches the same public-key used
in previous messages. If not, reject (m, s, p). If
v ∈ N(x)−{u} appears in p, then the public-key
of v should also match the one directly advertised
by v.

(b) Verify S.
(c) Learn one vertex at a time: Accept the message

only if PI(m, s, p) contains at most one new keyed
identity (at the end of the path) not present in
Gx. If so, update Gx with PI(m, s, p).

(d) Message suppression: If PI(m, s, p) adds no new
vertices or edges to Gx, ignore the message.

(e) To every u ∈ N(x), x transmits (m, s, p′) where
p′ = p ∪ {u} after updating the signature.

5. Flow computation: If the number of identity-disjoint
paths to (v, g(v)) in Gx is at least k + 1, then x deems
v to be a genuine identity and g(v) to be its public
key. By identity disjoint paths, we mean that no two
paths should contain two different vertices (v, g(v))
and (v, g′(v)) which share the same identity v.

The immediate-neighbor key check is necessary to ensure
that if an adversary v ∈ N(x), then v uses only a single
keyed-identity (v, g(v)) in all its messages propagated to x.
Any other message that x receives (from other neighbors)
which contains the identity v is accepted only if it contains
the same public key g(v).

3.2 Proof of Theorem 1: asynchronous version
In this section, we will prove Theorem 1 and show that
the asynchronous BROADCAST algorithm will eventu-
ally achieve reliable broadcast in an unknown network
U(n, G, N) if and only if G is 2k + 1 vertex connected. This
proof consists of two parts. First, we establish the require-
ment that a minimum 2k + 1 vertex connectivity is neces-
sary to achieve reliable broadcast. Next, we show how the
BROADCAST algorithm achieves reliable broadcast.
Minimum (2k+1) connectivity requirement: Consider
a graph H that is 2k vertex connected with k adversaries.
Consider any vertex cut C of size 2k containing the k adver-
saries that separates H into two components A and B. The k
adversaries can prevent nodes in A from reliably broadcast-
ing to nodes in B by modifying every message m(u) from
u ∈ A to m′(u). Nodes in B cannot determine whether m(u)
or m′(u) is genuine. Therefore, 2k vertex connectivity is in-
sufficient to achieve reliable broadcast in the presence of k
adversaries.
BROADCAST analysis: Let every good node execute
the BROADCAST algorithm to broadcast m(x). Consider
a particular good node x. For every other good node v with
public-key g(v), if (v, g(v)) is a vertex in Gx, then x would
have learnt the message m(v) in the first path-vector mes-
sage where (v, g(v)) is added to Gx since (v, g(v)) was the
last node in that message.
Let Gg = (Vg, Eg) represent the sub-graph comprising of all
the edges between the set of good nodes. Given that G is
2k +1 vertex connected with at most k adversaries, Gg is at
least k + 1 vertex connected. If every good node x can learn
all the edges in Eg, then it can definitely compute (k + 1)
identity-disjoint paths to every other good node and hence,
can successfully determine every other good node v, its pub-
lic key g(v) and message m(v). To show that the BROAD-
CAST algorithm achieves reliable broadcast, we need to
show that every good node will learn all edges in Eg.

To prove that each good node will eventually learn Eg, let us
separate the message exchange process between neighboring
nodes into rounds. In round i, let each node exchange the
new path-vector messages it learnt in round i − 1 with its
neighbors. Within each round i, every node will learn all
nodes within a distance i from the node. Hence, within O(n)
rounds every good node will learn all edges in Eg and hence
discover all the genuine nodes in G. Finally, the following
simple result on message complexity holds:

Lemma 3. In an unknown network U(n, G, N), let G
comprise of e edges. When k = 0, each node transmits
at most e path-vector messages to each neighbor using the
BROADCAST algorithm.

This result trivially follows from the message suppression
step in the BROADCAST algorithm. This step ensures that
for each edge in G, a good node propagates only one path-
vector message. In the absence of any adversary (k = 0), the
number of path-vector messages along each link is bounded
by e. In the presence of adversaries (k > 0) generating fake
messages, the number of path-vector messages along each
link depends on k. We discuss this complexity in Section 4.

3.3 Multiple Identities: Proof of Lemma 1
Consider the case where an adversarial node uses different
identities to different neighbors. A single adversary using
multiple identities is sufficient to disrupt reliable broadcast
in certain types of networks however large the connectiv-
ity may be. For any positive integer value m > 0, one can
construct a graph H consisting of n(> m) vertices which
satisfies the following two constraints:

1. H is 2m− 2 vertex-connected but not 2m− 1 vertex-
connected.

2. H contains a vertex-cut C such that m − 1 vertices
A1, . . . Am−1 ∈ C have non-overlapping neighbor-sets
N(A1), . . . N(Am−1).

In essence if A1, . . . Am−1 act as adversaries, then they can
disrupt reliable broadcast in H. Given one such graph H,
construct a new graph H ′ where the vertices A1, . . . Am−1

are collapsed into a single vertex A whose set of neighbors
represent the union of the set of neighbors of A1, . . . Am−1.
Clearly H ′ is m-connected. One can show that a single ad-
versarial node A using different identities is sufficient to dis-
rupt reliable broadcast in H ′. To do so, the adversary A
uses different identities to its neighbors in N(Ai) for each
0 < i < m, thereby creating an underlying graph that re-
sembles H.

4. COMPLEXITY ANALYSIS
In this section, we consider a synchronous version of the
BROADCAST algorithm and analyze its time complexity.
One needs to be careful when analyzing the time-complexity
of an algorithm in an unknown fixed identity network. The
traditional Byzantine agreement literature uses the concept
of rounds [11, 17, 13, 19] to analyze time-complexity. How-
ever, given that the entire network is unknown, enforcing the
global concept of a round is not feasible. On the other hand,
a completely asynchronous mode of communication [5, 19,
7] is also not suitable for our analysis since it is not possible
to provide time guarantees for message deliveries. Hence, we
revert to the traditional synchronous model and locally en-
force the concept of time by imposing capacity constraints
on links based on the following definition:
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Figure 1: (a) Packet delay along a linear path. (b) Example topology for G with 2m + 1 nodes with C being an

adversarial node.

Definition A network G is said to be capacity-constrained
if every node can only transmit O(1) bits of information to
each of its neighbors in a single unit of time.

Capacity constraints enable us to loosely enforce the con-
cept of a round globally while every node operates locally
at its own link-capacity rates. By enforcing an O(1) capac-
ity constraint on each link, we ensure that the ratio of the
time to deliver a message along a link is O(1). While we
analyze the time complexity of our algorithms based on the
capacity-constrained assumption, it is conceivable that al-
ternative measures of time may apply.

4.1 Message scheduling algorithm
To produce a synchronous version of the BROADCAST al-
gorithm for a capacity-constrained network, it is essential to
determine the mechanism used to schedule messages at every
node. In a capacity constrained network, each node receives
multiple messages from each neighbor but can propagate
only one message on each outgoing link. Hence, each node
needs to buffer messages and use a scheduling algorithm to
prioritize the messages to be transmitted. The lemma de-
scribed below shows that using a simple FIFO scheduling
algorithm does not suffice:

Lemma 4. If every node uses a simple First-in-First-out
(FIFO) queue with an infinite buffer to schedule messages
on each link, there exists an unknown network, U(n, G, N),
where G is 3−connected such that the minimum time com-
plexity of any algorithm to achieve reliable broadcast in the
presence of a single adversary is 2(n−3)/2.

Proof: We first show that in the particular topology illus-
trated in Figure 1, the delay incurred in transmitting a single
message from A to B separated by m capacity-constrained
hops can be as high as 2m−1 if intermediary nodes use FIFO
queues. Let this topology be capacity constrained in that ev-
ery node can transmit only one message along every link in
unit time. Let all nodes begin transmission at time t = 0
with all queues initially being empty. Now, assume that the
nodes Si connected to Ri continuously transmit one message
every unit time. In this case, if all Ri’s use FIFO queuing,
a single message from A to B will incur a worst-case delay
of 2m−1. Since each Si transmits one packet per unit time
to Ri, in the worst-case, A’s packet reaches R2 from R1 at
time t = 2, reaches R3 at t = 4 and reaches Ri+1 at t = 2i.
Hence, the bound 2m−1.
Next, using the previous result we construct a topology
where reliable broadcast with FIFO queues has a minimum
time complexity of 2(n−3)/2. Consider a modified topology

(as shown in Figure 1(b)) with 2m + 1 nodes comprising of
a loop of 2m nodes and a central node C connected to all
the nodes in the loop. Now let node C be the only adversar-
ial node that continuously injects fake path-vector messages
on each of its links. Each such fake message is generated
from a non-existent vertex and also contains an arbitrary
non-existent path. Now, two good nodes A and B can only
communicate through the two paths in the loop of length
m. By the previous argument, if all nodes use a FIFO queue
with an infinite buffer, any message from A to B will in-
cur a minimum delay of 2m−1. However, any algorithm that
achieves reliable broadcast should enable at least one mes-
sage to be communicated from A to B. Hence, the minimum
time complexity of any such algorithm using FIFO queues
is lower bounded by 2m−1 = 2(n−3)/2.
The above argument can also be directly extended to the
Fair Queuing discipline where a node divides a link’s ca-
pacity equally amongst all its other neighbors. In the above
example, FIFO scheduling and Fair queuing does not work
primarily because an adversarial node can flood the network
with spurious messages and delay the delivery of packets.

4.1.1 Identity-based rate limiting
The goals of identity-based rate-limiting are two-fold: (a)
hold nodes accountable for every message they transmit
and limit the capability of adversaries to flood messages;
(b) associate a higher priority to the messages from lesser-
known nodes which have not received enough opportunities
to transmit messages. To achieve these, the key idea is to
rate-limit messages across identities and keyed-identities. To
do so, the algorithm computes two simple metrics:

1. Identity priority: Let I1(u, t) represent the number of
path-vector messages transmitted prior to time t with
identity u in the path. A message (m, s, p) has an iden-
tity priority p1(m, s, p) which is the maximum value of
I1(u, t) for all identities u ∈ p.

2. Keyed-identity priority: Let I2((u, g(u)), t) represent
the number of messages transmitted prior to time
t with keyed identity (u, g(u)) in the keyed-identity
path. The keyed-identity priority p2(m, s, p) of a mes-
sage is the maximum value of I2((u, g(u)), t) over all
keyed identities (u, g(u)) in the path.

The scheduling strategy is as follows:
1. Schedule message (m, s, p) with the lowest identity pri-

ority, p1(m, s, p).
2. If multiple messages have the same minimum identity

priority, schedule the message among them with the
lowest keyed-identity priority, p2(m, s, p).

3. Use FIFO as a final tie-breaking rule.



The rationale behind maintaining two separate priorities is
two-fold. First, the identity-based priority is essential to pre-
vent an adversary to use multiple keyed identities and prop-
agate spurious messages. For example if we use only keyed-
identity priorities in the topology illustrated in Figure 1(b),
the lower bound argument used in the case of FIFO holds
in this case too. Second, the keyed-identity based count is
essential because an adversary can artificially increase the
identity-based count of a good node by inserting the good
node in a path. However, an adversary cannot artificially
increment the keyed-identity based count of a node.

4.2 BROADCAST algorithm complexity
We use Gg = (Vg, Eg) to represent the sub-graph of G com-
prising of only the good nodes Vg and Eg, the set of edges
between them. Assuming Gg is connected, let diam(Gg) de-
note its diameter. We prove the following theorem on the
BROADCAST algorithm.

Theorem 4. Given a bound k on the number of adver-
saries and a bound ∆ on diam(Gg) in an unknown network
U(n, G, N), the BROADCAST algorithm with identity-rate
limiting (IRL) achieves reliable broadcast in:

1. O(N2n log n) time for k = 0.
2. O(N3n log n) time for k = 1.
3. O((k + 1)∆N2n log n) time for k > 1.

Proof. In a capacity constrained network, a node can
transmit only O(1) bits per unit time. For simplicity, we
bound the total number of bits consumed by every path-
vector message by O(n log n) (log n bits for each identity
and n for the maximum number of signatures in a message).
We analyze the complexity separately for three cases:

Lemma 5. When k = 0, BROADCAST + IRL achieves
reliable broadcast in O(ne log n) time where e is the number
of edges in G.

Proof: If the first node initiates transmission at time t = 0,
every node will receive a wake up signal after n path-
vector message transmissions given that the diameter of
G is bounded by n. After wakeup, the message suppres-
sion step in the BROADCAST algorithm ensures that every
node learns G after e message transmissions along each edge.
Since each node will always have a new path-vector message
to transmit and that each message has O(n log n) time com-
plexity for transmission on a link, BROADCAST requires
O(en log n) time to converge.

Lemma 6. When k = 1, BROADCAST+IRL achieves
reliable broadcast in O(n2e log n) time.

Proof: We first analyze a simple scenario as illustrated in
Figure 2(a) where nodes A and B are m + 1 hops away
and A propagates one message to B in the presence of an
adversary X that continuously injects packets along each
hop in the path (No other node propagates any message in
this example). If all transmissions begin at t = 0 with the
identity based counts set to zero, the IRL algorithm will
ensure that for every message that A propagates, X can at
most insert m messages, one along each of the links XRi.
Hence, A’s message is delivered to B within (m + 1)n log n
time assuming a simple upper bound of n log n bits for each
message.

In the general case, from the proof of Lemma 5, we know
that every good node needs to receive e different path-vector
messages to completely learn the good graph Gg. To analyze
the worst-case time bound, we analyze each such message in
isolation. Each message (m, s, p) that traverses a path p com-
prising of |p| good nodes experiences a delay of (|p|+1)n log n
since an adversary X can inject spurious messages (either
directly or indirectly) for each node along p. |p| represents
the length of path p and is clearly bounded by n−1. Hence,
each message in isolation if delivered one at a time is deliv-
ered to a good node in O(n2 log n) time. The time to deliver
e messages is bounded by O(n2e log n) time.

Lemma 7. For a general value k, given a bound ∆ ≥
diam(Gg), using BROADCAST+IRL, every good node
achieves reliable broadcast after O((k + 1)∆en log n) time.

Proof Sketch: Much like Lemma 6, we consider a sim-
ple scenario of two good nodes A and B separated by m
hops (as shown in Figure 2(b)), except that the adversaries
X1, . . . , Xk continuously inject messages at every node Ri

along the path. Unlike Lemma 6, we show that the delay
incurred by every message from A in this case can be as
high as O((k + 1)m × n log n). In the general case, given a
bound ∆ on diam(Gg), the information about every edge
in Gg can be transmitted along a path of at most ∆ hops.
Hence, the maximum time required to discover e edges in
Gg is bounded by O((k + 1)∆en log n).
Stoppage constraint: The final element of the proof is the
stoppage constraint. Since no node is aware of the values of
n and e, each good node cannot determine when the full
graph is learned. We use the bound N to represent a bound
on n and N2 as a bound on e, the number of edges. These
bounds need to be applied only on the number of messages
but not on the size of each message. Hence, we can still retain
the O(n log n) bound on the maximum time complexity of a
single message. Replacing these bounds in Lemmas 5, 6 and
7 completes the proof.

4.3 Lower-bound time complexity
We show the following lower-bound on the time complexity
of any reliable broadcast algorithm.

Lemma 8. Given a bound k on the number of adversaries,
there exists a capacity constrained network U(n, G, N) where
G is 2k + 1 vertex connected, such that any algorithm that
achieves reliable broadcast in U(n, G, N) has a minimum
time complexity of 2k.

We refer the reader to our technical report [27] for a proof
of this result. Notice the wide gap between the lower-bound
result and the time complexity of our algorithm. Addressing
this complexity gap is an open research problem; our work
primarily illustrates the existence of an algorithm to achieve
reliable broadcast but does not target optimality.

4.4 Limitations of capacity-constraints
Analyzing the time complexity of a distributed algorithm
with capacity constraints on link-topologies is a very restric-
tive model. Lemma 4 illustrates the limitation of FIFO in the
face of a single adversary, where a single message transmis-
sion can be exponentially complex with capacity constraints.
In other words, many simple distributed algorithms includ-
ing the emulation of a single round in a Byzantine agreement
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Figure 2: (a) Single adversary case. (b) Example topology for the case when k > 1.

algorithm has exponential complexity. Given this, the bound
for the case k > 1 of the BROADCAST algorithm should be
viewed as a worst-case bound (where an adversary generates
infinite bogus message) which is not completely reflective of
the real-life scenario. In a realistic setting, we would expect
the asynchronous version of the BROADCAST algorithm to
have much lower run-time complexity and anticipate an ad-
versary to generate only a finite number of bogus announce-
ments. With finite bogus announcements from adversaries,
the complexity is polynomial in the number of nodes with
capacity constraints.

5. SPARSE NETWORKS
In this section, we describe our results for the problem of
reliable broadcast in 1−connected and 2−connected graphs
in the presence of a single adversary i.e., k = 1.

5.1 Lower bound of Theorem 2
In this section, we show the existence of 1−connected and
2−connected graphs such that a single adversary with a de-
gree d can create broadcast partitions of sizes 2d and d re-
spectively in these graphs. This establishes the lower bound
on the size of a broadcast partition that a single adversary
can create in 1-connected and 2−connected graphs. In this
analysis, we assume that the adversary is aware of G while
good nodes are aware of only their neighbors. This assump-
tion is valid since the adversary can first learn about G from
good nodes and then propagate spurious messages. The fol-
lowing lemmas establish the lower-bound.

Lemma 9. There exists a tree G such that an adversarial
node A in G with degree d can create a broadcast partition
of size 2d in U(n, G, N).

Proof: We first analyze the case when d = 1. Let G0 be a
tree rooted at a node r (refer Figure 3(a)). Let v be a child
of r such that the sub-tree rooted at v is non-empty and
does not contain the adversarial node A. Let T (v) represent
the set of nodes in the sub-tree rooted at v (excluding v)
and let T ′(v) = V − T (v) − {v, A}. Pick any tree G0 such
that T (v) and T ′(v) are non-empty. For every node u ∈ T (v)
that attempts to reliably broadcast a message m(u), let A
propagate a spurious message m′(u) as if u propagated the
message (as illustrated in Figure 3(a)). Since no node in
T ′(v) is directly adjacent to any node in T (v), these nodes
will receive two messages m(u) and m′(u) and cannot figure
out which message is genuine. All genuine messages from
T (v) are routed through v and all spurious messages m′(u)
are routed through A and nodes in T ′(v) cannot determine
which node to believe. Hence no node in T ′(v) can reliably
communicate with any node in T (v). Thereby, A creates a
broadcast partition (T (v) ∪ {v}, T ′(v) ∪ {v}) of size 2.
For the general case, we can create a tree G with d repli-
cas of G0 with the vertex A merged across all these replicas
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Figure 4: An example topology for the penalty based

defense strategy.

(as illustrated in Figure 3(b)). In this case, by simply drop-
ping all good messages traversing it, A can create d separate
components which cannot reliably broadcast to each other.
Within each such component, A acts as a leaf node and can
create a broadcast partition of size 2. Hence, A can create a
broadcast partition of size 2d.

Lemma 10. There exists a 2-connected graph G such that
an adversarial node A in G with degree d can create a broad-
cast partition of size d in U(n, G, N).

Proof: Consider the graph G illustrated in Figure 3(c), where
P1, . . . Pd are paths of good nodes such that the end-points
of each path connect to two separate vertices A and v. In this
case, A has degree d. For every node ui ∈ Pi that intends to
reliably broadcast a message m(ui), A propagates a message
m′(ui) to all its neighbors in Pj where j 6= i. Hence, every
node uj ∈ Pj will receive two messages: m(ui) (through
v) and m′(ui); hence for every ui ∈ Pi (i 6= j), uj cannot
ascertain which of the two messages is genuine. Therefore,
no pair of nodes (ui, uj) , ui ∈ Pi and uj ∈ Pj , j 6= i,
can reliably communicate. A creates a broadcast partition
(P1 ∪ {v}, . . . , Pd ∪ {v}) of size d.

5.2 Defensive strategy
Now, we describe an optimal penalty-based defensive strat-
egy that a good node uses to limit the size of a broadcast
partition that an adversary can cause to the lower bound.
This mechanism works only for k = 1. The defensive strat-
egy uses one key corollary that directly follows from Theo-
rem 1:
Corollary 1: Let H be a 2−connected subgraph of G in
an unknown network U(n, G, N), comprising of only good
nodes. In the presence of a single adversary, M , every node
in H can reliably broadcast to all nodes in H.
We explain the intuitive idea behind the penalty-based de-
fense strategy using an example illustrated in Figure 4. Let
H(v) represent the set of all keyed-identities that have a 2
identity disjoint paths to v. An adversary M cannot disrupt
any of these nodes. In this example, however, M attempts
to disrupt reliable communication to multiple nodes P , Q,
R, S which connect (directly or indirectly) using good paths
to different nodes A, B, C and D in H(v). From the perspec-
tive of v, M and A disagree on P , M and B disagree on Q,
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M and C on R and finally M and D on S. Hence, if v asso-
ciates a penalty with a node for every identity-disagreement,
then M obtains the maximum penalty of 4 while the nodes
A, B, C, D each obtain a penalty of 1. Therefore, v notes M
to be a suspicious candidate and filters M ’s messages and
chooses the genuine identities propagated by A, B, C, D.
Now, we present the penalty-based algorithm based on the
idea explained above. Initially, every node x executes the
BROADCAST+IRL algorithm for the case of k = 1 and
computes the keyed-identity graph Gx. Next, they apply the
following penalty algorithm on Gx.
PENALTY (Node x, Graph Gx)

1. We declare a keyed-identity (y, g(y)) to be genuine if
x has two identity disjoint paths to (y, g(y)).

2. The tail-end of a keyed-identity (v, g(v)) is the path
from the node (y, g(y)) to (v, g(v)) in Gx such that
(y, g(y)) is the last genuine node in any path from x
to (v, g(v)).

3. An identity u has a conflict if there are at least two
keyed identities with the same identity in Gx.

4. Penalty assignment: The penalty of an identity u is
the number of distinct conflicting identities y for which
some keyed-identity (u, g′(u)) appears in the tail-end
of a keyed-identity (y, g(y)).

Node-selection criteria: Based on the penalties assigned
to identities, the criteria for selecting nodes is simple. For
each keyed identity, (v, g(v)) that has a conflict, determine
the maximum penalty of the identity u that appears in the
tail-end of (v, g(v)). Choose the keyed-identity with the min-
imum value of the maximum penalty. If no unique minimum
exists, then we declare the identity as non-identifiable.
Revisiting the example in Figure 4, v will notice P, Q, R and
S to be conflicting identities. The genuine keyed-identity of
P propagated by M will have a maximum penalty of 1 while
the fake keyed-identity generated by the adversary M will
have a penalty of 4. Hence, the penalty based algorithm
chooses the genuine keyed-identities for P, Q, R, S.
The following lemma holds regarding the penalty-based al-
gorithm:

Lemma 11. In an unknown network U(n, G, N), if all
good nodes use the BROADCAST+IRL+PENALTY algo-
rithm for determining genuine nodes, a single adversary
with degree d(A) can create a broadcast partition of size at
most: (a) d(A) if G is 2−connected; (b) 2 × d(A) if G is
1−connected.

The proof of Lemma 11 is presented in our technical re-
port [27]. This lemma completes the proof of Theorem 2.

5.3 Proof sketch of Theorem 3
Finally, we provide a proof sketch for Theorem 3 described
in Section 1.3 where we show that given a power-law ran-

dom graph (PLRG) G(n, α) on n nodes with parameter α
(2 < α < 3), the cumulative damage that a single adversary

can cause is bounded by O(n1/α × (log n)(5−α)/(3−α)) with
high probability. We prove two results on power-law random
graphs to show this result.

Lemma 12. Every PLRG, G(n, α) for large values of n

has a 3-connected subgraph H with O(n/((log n)
α−1
3−α )) ver-

tices with high probability.

Lemma 13. Given a PLRG G(n, α) and a random ver-
tex v with degree d, the number of vertices that get discon-
nected from the largest component in G− {v} is bounded by

d(log n)(5−α)/(3−α) with high probability.

We refer the reader to our technical report [27] for detailed
proofs of these lemmas. To quantify the cumulative damage
an adversary A can cause, let A have a maximum degree
in G of n1/α. The number of vertices solely reliant on A is
bounded by n1/α×(log n)(5−α)/(3−α). Given that there exists
a sub-graph H which is 3−connected, A cannot affect any
node within this subgraph. Also, all these nodes can reliably
broadcast all their messages within H. Additionally, every
vertex v has one or more (indirect) neighbors within H. For
every identity v that A propagates a spurious message, the
penalty value of A increments by 1 and so does the penalty
value of the indirect neighbors of v in H. If A targets specific
identities such that the indirect neighbors of these identities
are distributed among different vertices in H, then A obtains
the maximum penalty value and hence is always ignored. To
prevent this, A can at most target identities connected to a
specific vertex u in H such that the penalties of u and A from
the perspective of other nodes is the same. If A targets any
additional identity which has a different indirect neighbor in
H, then A’s penalty overshoots u. Hence, to maximize the
cumulative damage, A should target only those identities
that solely rely on either A or u or both to connect to H.
Using Lemma 12, we can bound this number by 4× n1/α ×
(log n)(5−α)/(3−α).

6. CONCLUSIONS AND IMPLICATIONS
In this paper, we study the problem of reliable broadcast
in unknown fixed-identity networks. The results presented
in this paper on this problem is of practical significance for
several widely-used distributed systems including the Inter-
net, Domain Name Service (DNS). From a theoretical stand-
point, two immediate implications that follow are: decen-
tralized key-distribution and byzantine agreement. If reliable
broadcast is achievable, then every good node can broadcast
its public-key to other good nodes in the system thereby
achieving key-distribution in a decentralized manner. This



result has important ramifications for building decentral-
ized security mechanisms for Internet routing as illustrated
in [28] and DNS. Apart from key distribution, reliable broad-
cast is an essential building block for achieving byzantine
agreement in unknown networks. The correspondence be-
tween the two is described earlier in Section 1.4.
The sparse network results have important ramifications for
Internet routing. The Internet topology at the autonomous
system is 1−connected and therefore cannot handle even a
single adversarial node. The best-known previous result on
reliable broadcast for sparse networks is that the problem is
not solvable. Here, we show that one can limit the damage
of an adversary by using penalty-based filtering. Specifically,
for, Internet-like graphs which are modeled based on power-
law random graphs, we show that a single adversary can
cause very little damage. While the overall Internet topology
is sparse, there are sub-graphs within this topology which
exhibit high vertex connectivity. Within these sub-graphs,
perfect reliable communication is achievable.
Two specific open problems that arise from this work are:
(a) Can the connectivity requirements be relaxes for inde-
pendent adversaries? (b) Can we solve this problem without
assuming a known bound on the number of adversaries? Im-
provements in the time complexity and the communication
overhead of our schemes are possible areas of future work.
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